## LOSSLESS FORMATS (FLAC, ETC.)

#### MARGARET HOPKINS, MUMT 621

#### WHAT IS A LOSSLESS FORMAT?

We compress audio to save memory

 $\rightarrow$  lossy formats like MP3 remove inaudible information – cannot be restored

- Lossless formats allow us to completely reconstruct the original signal
- Typically use more memory than lossy compression

## FREE LOSSLESS AUDIO CODEC (FLAC)

- Open format, royalty free compression format
  - $\rightarrow$  compresses to 50-70% of original size
  - $\rightarrow$  all data can be completely recovered from the compressed version
- Fast encoding and decoding, extensive hardware support, and free reference implementation (Rivero & Mishra 2008)















Computes and compresses the difference between predicted and original signal

#### DICTIONARY-BASED COMPRESSION

 Uses a static or frequency-based dictionary
Commonly used
"words" are stored in dictionary and called by their index



Source: Rivero & Mishra (2008)

#### **GRAMMAR-BASED COMPRESSION**

An algorithm creates a context free grammar for the string to be compressed

 $\rightarrow$  "grammars can capture repetitions occurring far apart in the data," – Cherniavsky & Ladner (2004)

 The grammar replaces substrings with their references in a combination that produces the smallest possible encoding (Humphries, Sidorov, Jones, & Marshall 2021)

#### GRAMMAR-BASED COMPRESSION

Source: Cherniavsky & Ladner (2004)



Figure 1: Overview of grammar compression

#### **BURROWS-WHEELER TRANSFORM**

- Proposed in 1994 as a method to prepare data for compression
- Reorders a string of characters so that there are more segments with repeated characters
  - $\rightarrow$  makes the string more suitable for run-length and move-to-front encoding
- Can be reversed to restore the original string

Consider the string "ABRACA":



Source: Burrows & Wheeler (1994)

ABRACA

BRACAA

RACAAB

ACAABR

CAABRA

Consider the string "ABRACA":



ABRACA BRACAA RACAAB ACAABR CAABRA AABRAC

Next, we reorder the matrix lexographically, noting the index of the row with the original string



The Burrows-Wheeler transform of of the string is the last column of the new matrix



$$Index = 2$$

#### **BURROWS-WHEELER TRANSFORM**

# $\mathsf{ABRACA} \xrightarrow{} \mathsf{CARAAB}$

The resulting string has more runs of repeated characters, especially if there were repeated words in the input

#### LOSSLESS IMAGE/VIDEO COMPRESSION

Other types of media can also be compressed into lossless formats:
→ photos: PNG, GIF, TIFF
→ videos: H.264 Lossless, H. 265 Lossless, Motion JPEG Lossless, Apple

Animation Quicktime RLE

#### **APPLICATIONS TO MIR**

26

## ARCHIVAL PURPOSES

- Cooper (2020)
  - ightarrow archiving a large collection donated to the University of Leeds by Trevor Jones
  - $\rightarrow$  digitized recordings and stored using FLAC in order to retain all information while saving memory
- Lai, Li, & Fujinaga (2005)
  - $\rightarrow$  digitizing album covers from David Edelberg's record collection
  - $\rightarrow$  tested two lossless image compression formats:TIFF and PNG
  - $\rightarrow$  chose PNG for significant file size reduction, open format, and good metadata

27

#### HUMPHREYS, SIDOROV, JONES, & MARSHALL (2021)

- Used grammar-based compression to perform musicological tasks
  - $\rightarrow$  detecting transcription errors
  - $\rightarrow$  classifying pieces by melodic characteristics
  - $\rightarrow$  segmenting pieces for musical analysis

Dataset: 7928 scores from Acadia Early Music Archive, CPDL and Musopen

- Used string processing techniques designed for compression and pattern matching within text
- Algorithms used: Lempel-Ziv Welch, Burrows-Wheeler with run-length encoding, and GZIP

#### HUMPHREYS, SIDOROV, JONES, & MARSHALL (2021)

- Error detection: compared size of compressed original data and altered data
  - $\rightarrow$  if the size was different, there was an alteration
  - $\rightarrow$  all algorithms could detect a single error
  - $\rightarrow$  logarithmic response to increasing number of errors
- Classification: used compression distance between two scores to rate their similarity
  - $\rightarrow$  used the Meertens Tune Collections
  - ightarrow compressing scores with common components produces a smaller model
  - $\rightarrow$  success rates: 0.92 for ZZ and 0.83 for IIR-MC

#### HUMPHREYS, SIDOROV, JONES, & MARSHALL (2021)

Segmentation: hypothesized that using a grammar-based compressor would divide the data in a musicologically significant way
→ ZZ performed well on pieces containing exact matches, like Bach's Fugue no. 20 from the Well-Tempered Clavier
→ strong correlation between rules from the grammar-based compressors and analysis by Bruhn (1993)

## CONCLUSIONS

- Lossless compression allows us to store audio and visual data with reduced memory use without losing any information
- Compression algorithms can also be used for pattern recognition that can be applied to structural music analysis, classification, and error detection

#### REFERENCES

Burrows, M. and D. J. Wheeler. 1994. "A Block-sorting Lossless Data Compression Algorithm." Systems Research Center Research Report, May 10, 1994.

https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1E68984AB08B8212758B54156463A6B5?doi=10.1.1.37.6774&rep=rep1&type=pdf.

- Cherniavsky, Neva and Richard Ladner. 2004. "Grammar-based Compression of DNA Sequences." University of Washington Computer Science & Engineering Technical report, May 28, 2004. https://dada.cs.washington.edu/research/tr/2007/05/UW-CSE-07-05-02.pdf.
- Cooper, David. 2020. "The Trevor Jones Archive: Issues in the Establishment and Management of a Film and Television Music Archive." Sources and Research from the Institute of Music no. 5: 101–113. http://onlinepublishing.cini.it/index.php/arno/article/view/175/282.
- Humphreys, David, Kirill Sidorov, Andrew Jones, and David Marshall. 2021. "An investigation of music analysis by the application of grammar-based compressors." *Journal of New Music Research* 50 no. 4: 312–341. https://doi.org/10.1080/09298215.2021.1978505.
- Lai, Catherine, Beinan Li, and Ichiro Fujinaga. 2005. "Preservation digitization of David Edelberg's Handel LP Collection: A Pilot Project." In Proceedings of the 6<sup>th</sup> International Conference on Music Information Retrieval, 570–575. Queen Mary, University of London. https://ismir2005.ismir.net/proceedings/1090.pdf.
- Rivero, Cristobal and Prabhat Mishra. 2008. "Lossless Audio Compression: A Case Study." Computer Information Science & Engineering Technical Report 08-415, August 7, 2008. https://esl.cise.ufl.edu/Publications/audioTR.pdf.

32